
Review for the Final Exam 

A. Regular Languages 

• DFAs, NFAs, -NFAs   You should be able to convert any of the others to a DFA. 

• Regular Expressions.  It is fairly easy to convert a regular expression to a DFA.  It is 

possible but harder to convert a DFA to a regular expression. 

• The Pumping Lemma:  If |w| > p  then w=xyz where |xy|<=p, y is not empty, and xyiz 

is in the language for all i>= 0. 

• Properties of Regular Languages:  Unions, Intersections, Differences and 

Complements of regular languages are regular. 

 

B. Context-Free Languages 

• Grammars 

• PDAs 

• To show that grammars generate the same languages as PDAs we found algorithms 

to convert a grammar to a PDA (easy) and to convert a PDA to a grammar (hard). I 

won’t ask you  to do the latter on the final exam. 

• Chomsky Normal Form and the algorithm for finding a CNF grammar equivalent to a 

given grammar. 

• The Pumping Lemma for Context-Free languages:  If |z| > p  then z=uvwxy where 

|vwx|<=p, v and x aren’t both empty, and uviwxiy is in the language for all i>= 0. 

• Properties of CF Languages:  Unions and concatenations of CF languages are CF.  

Intersections and Complements of CF languages are not necessarily CF. 

 

C. Turing Machines 

• Simple TMs, multli-track, multi-tape and non-deterministic TMs 

• Church’s Thesis: TMs embody our notion of an algorithm 

 

D. Decidability 

• Recursive languages, Recursively enumerable languages, Decidable problems, 

Recognizable problems 

• The diagonal language Ld={M | M does not accept its own encoding} is not RE. 

• The universal language Lu = {(M,w) | M accepts w} is RE but not Recursive. 

The complement of Lu  is not RE. 

• The halting language Lhalt = {(M.w) | M halts on input w} is RE but not recursive. 

• Rice’s Theorem: Any nontrivial property of context-free languages is undecidable. 

 

  



 

E. NP-Completeness 

• P is the  class of problems that can be solved deterministically in polynomial time 

• NP is the class of problems that can be solved non-deterministically in polynomial 

time, which usually means that a solution can be  verified deterministically in 

polynomial time. 

• A problem is NP-hard if all NP problems reduce to it.  

• A problem is NP-Complete if it is both in NP and NP-hard.  If any NP-Complete 

problem was in P then P would equal NP. 

• Cook’s (or Cook-Levin) Theorem: SAT is NP-Complete. 

• CNF-SAT and 3CNF-SAT are both NP-Complete. 

• You should know what all of this means, but I am unlikely to ask you to prove that a 

specific language is NP-Complete. 

 


