
Review for the Final Exam

A. Regular Languages

• DFAs, NFAs, -NFAs You should be able to convert any of the others to a DFA.

• Regular Expressions. It is fairly easy to convert a regular expression to a DFA. It is

possible but harder to convert a DFA to a regular expression.

• The Pumping Lemma: If |w| > p then w=xyz where |xy|<=p, y is not empty, and xyiz

is in the language for all i>= 0.

• Properties of Regular Languages: Unions, Intersections, Differences and

Complements of regular languages are regular.

B. Context-Free Languages

• Grammars

• PDAs

• To show that grammars generate the same languages as PDAs we found algorithms

to convert a grammar to a PDA (easy) and to convert a PDA to a grammar (hard). I

won’t ask you to do the latter on the final exam.

• Chomsky Normal Form and the algorithm for finding a CNF grammar equivalent to a

given grammar.

• The Pumping Lemma for Context-Free languages: If |z| > p then z=uvwxy where

|vwx|<=p, v and x aren’t both empty, and uviwxiy is in the language for all i>= 0.

• Properties of CF Languages: Unions and concatenations of CF languages are CF.

Intersections and Complements of CF languages are not necessarily CF.

C. Turing Machines

• Simple TMs, multli-track, multi-tape and non-deterministic TMs

• Church’s Thesis: TMs embody our notion of an algorithm

D. Decidability

• Recursive languages, Recursively enumerable languages, Decidable problems,

Recognizable problems

• The diagonal language Ld={M | M does not accept its own encoding} is not RE.

• The universal language Lu = {(M,w) | M accepts w} is RE but not Recursive.

The complement of Lu is not RE.

• The halting language Lhalt = {(M.w) | M halts on input w} is RE but not recursive.

• Rice’s Theorem: Any nontrivial property of context-free languages is undecidable.

E. NP-Completeness

• P is the class of problems that can be solved deterministically in polynomial time

• NP is the class of problems that can be solved non-deterministically in polynomial

time, which usually means that a solution can be verified deterministically in

polynomial time.

• A problem is NP-hard if all NP problems reduce to it.

• A problem is NP-Complete if it is both in NP and NP-hard. If any NP-Complete

problem was in P then P would equal NP.

• Cook’s (or Cook-Levin) Theorem: SAT is NP-Complete.

• CNF-SAT and 3CNF-SAT are both NP-Complete.

• You should know what all of this means, but I am unlikely to ask you to prove that a

specific language is NP-Complete.

