Review for the Final Exam

- A. Regular Languages
 - DFAs, NFAs, ε -NFAs You should be able to convert any of the others to a DFA.
 - Regular Expressions. It is fairly easy to convert a regular expression to a DFA. It is possible but harder to convert a DFA to a regular expression.
 - The Pumping Lemma: If |w| > p then w=xyz where |xy| <= p, y is not empty, and $xy^{i}z$ is in the language for all i>= 0.
 - Properties of Regular Languages: Unions, Intersections, Differences and Complements of regular languages are regular.
- B. Context-Free Languages
 - Grammars
 - PDAs
 - To show that grammars generate the same languages as PDAs we found algorithms to convert a grammar to a PDA (easy) and to convert a PDA to a grammar (hard). I won't ask you to do the latter on the final exam.
 - Chomsky Normal Form and the algorithm for finding a CNF grammar equivalent to a given grammar.
 - The Pumping Lemma for Context-Free languages: If |z| > p then z=uvwxy where $|vwx| \le p$, v and x aren't both empty, and uv^iwx^iy is in the language for all i>= 0.
 - Properties of CF Languages: Unions and concatenations of CF languages are CF. Intersections and Complements of CF languages are not necessarily CF.
- C. Turing Machines
 - Simple TMs, multli-track, multi-tape and non-deterministic TMs
 - Church's Thesis: TMs embody our notion of an algorithm
- D. Decidability
 - Recursive languages, Recursively enumerable languages, Decidable problems, Recognizable problems
 - The diagonal language \mathcal{L}_d ={M | M does not accept its own encoding} is not RE.
 - The universal language $\mathcal{L}_u = \{(M, w) \mid M \text{ accepts } w\}$ is RE but not Recursive. The complement of \mathcal{L}_u is not RE.
 - The halting language $\mathcal{L}_{halt} = \{(M.w) \mid M \text{ halts on input } w\}$ is RE but not recursive.
 - Rice's Theorem: Any nontrivial property of context-free languages is undecidable.

- E. NP-Completeness
 - \mathscr{P} is the class of problems that can be solved deterministically in polynomial time
 - \mathcal{NP} is the class of problems that can be solved non-deterministically in polynomial time, which usually means that a solution can be verified deterministically in polynomial time.
 - A problem is NP-hard if all NP problems reduce to it.
 - A problem is NP-Complete if it is both in \mathcal{NP} and NP-hard. If any NP-Complete problem was in \mathcal{P} then \mathcal{P} would equal \mathcal{NP} .
 - Cook's (or Cook-Levin) Theorem: SAT is NP-Complete.
 - CNF-SAT and 3CNF-SAT are both NP-Complete.
 - You should know what all of this means, but I am unlikely to ask you to prove that a specific language is NP-Complete.